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Population Differences in the Rate of Proliferation
of International HapMap Cell Lines

Amy L. Stark,1 Wei Zhang,2 Tong Zhou,3 Peter H. O’Donnell,4,5 Christine M. Beiswanger,6

R. Stephanie Huang,4,5 Nancy J. Cox,7 and M. Eileen Dolan4,5,*

The International HapMap Project is a resource for researchers containing genotype, sequencing, and expression information for EBV-

transformed lymphoblastoid cell lines derived from populations across the world. The expansion of the HapMap beyond the four initial

populations of Phase 2, referred to as Phase 3, has increased the sample number and ethnic diversity available for investigation. However,

differences in the rate of cellular proliferation between the populations can serve as confounders in phenotype-genotype studies using

these cell lines. Within the Phase 2 populations, the JPT and CHB cell lines grow faster (p< 0.0001) than the CEU or YRI cell lines. Phase

3 YRI cell lines grow significantly slower than Phase 2 YRI lines (p < 0.0001), with no widespread genetic differences based on common

SNPs. In addition, we found significant growth differences between the cell lines in the Phase 2 ASN populations and the Han Chinese

from the Denver metropolitan area panel in Phase 3 (p < 0.0001). Therefore, studies that separate HapMap panels into discovery and

replication sets must take this into consideration.
The International HapMap Project was designed to charac-

terize genetic variation of different individuals from mul-

tiple populations, and the samples generated for the

project provide the research community with a unique

resource for investigating genetics and cellular phenotypes

that would be difficult to investigate in humans. Phases 1

and 2 (referred to as Phase 2 for this study) of the project

focused on 270 Epstein-Barr virus (EBV)-transformed lym-

phoblastoid cell lines (LCLs) from four populations: 90

Yoruba (YRI) individuals comprised of 30 trios collected

from Ibadan, Nigeria; 45 unrelated Japanese individuals

collected from Tokyo (JPT) and 45 unrelated Han Chinese

individuals collected from Beijing (CHB), often considered

together as 90 Asian (ASN) lines; and 90 Utah residents

with ancestry from northern and western Europe (CEU),

comprising 30 trios. Phase 3 of the HapMap project

expanded the populations and number of cell lines avail-

able. The original populations were supplemented, and

seven additional populations were added. With the excep-

tion of the CEU cell lines, which were collected and trans-

formed approximately thirty years ago, all of the other cell

lines were collected within the last ten years and trans-

formed by Coriell Institute for Medical Research (Camden,

NJ, USA).

The HapMap cell lines provide extensive publicly avail-

able genotyping data,1,2 allowing for studies of the contri-

bution of genetics to baseline gene expression3–8 and phar-

macologic phenotypes.9–11 These lines have been utilized

for other studies, including evaluation of copy-number

variation,12–14 and are part of the 1000 Genomes Project,15

in which low-pass sequencing is used to identify most

genetic variants that have frequencies of at least 1% in
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the populations studied. Thus, the cell lines are extraordi-

narily rich in genetic information, making them valuable

for genotype-phenotype studies using the results of any

cellular phenotype.

A major advantage to these cell lines is that they offer an

alternative to pharmacogenomic studies that would be

considered challenging, if not impossible, to perform in

human subjects.16 The fundamental challenge in attempt-

ing to identify pharmacogenomic markers from patient

trials is that such studies would require a homogenous

population of patients treated with the same dosage

regimen and minimal confounding variables. In oncology,

the standard of care tends to change as new therapies are

tested, and the vast majority of patients receive multiple

drugs.

In order to facilitate the use of cell lines for pharmacoge-

netic studies, investigators have undertaken a variety of

studies designed to understand potential variability among

cell lines, such as the EBV baseline copy-number, rate of

cellular proliferation, and ATP levels.17 Furthermore, the

effect of one confounding variable, cellular prolifera-

tion rate, on cellular susceptibility to chemotherapeutic-

induced cytotoxicity using these LCLs was previously

reported.18

In this study, we have made a systematic examination

of the rate of proliferation within and among popula-

tions, with the goal of recognizing and providing addi-

tional tools for future study involving these LCLs. The

alamarBlue assay described previously was used to measure

cellular growth rate in all cell lines.18 Of the 11 populations

included in the HapMap Project, only the CEU LCLs

existed as previously established cell lines. The other ten
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Figure 1. Intra- and Interpopulation Growth-Rate Differences
among HapMap Panels
The two Yoruba panels’ growth rates as measured with alamarBlue
were significantly different (p < 0.0001). The original three
HapMap populations had similar growth rates for the CEU and
YRI, but the samples making up the ASN population grew faster
than those of the other two populations (p < 0.0001). The Han
Chinese fromDenver samples grew significantly slower than those
of the ASN (p < 0.0002).

Figure 2. Principal Component Analysis Shows that YRI Phase 2
and 3 Are Overall Genetically Similar
PCA was performed with the use of the NIPALS algorithm in the
ade4 library of the R package and the use of ~650,000 common
SNPs (MAF > 0.05). The two populations did not separate into
distinct clusters. The first twomajor principal components explain
only 1% of the total data variance.
populations were collected and established as cell lines

specifically for the HapMap Project over the years 2002

through 2007. Peripheral-blood samples were collected

from the participating populations according to strict

institutional review board and community-engagement

protocols. Mononuclear cells were isolated from the sam-

ples and transformed with EBV as described previously.19

Cell lines were minimally expanded (approximately 100-

fold expansion) before inclusion in the HapMap popula-

tion panels.

In the original Phase 2 populations, there was no signif-

icant difference in the cellular proliferation rate between

the YRI and CEU lines; however, the ASN (JPT and CHB)

cell lines grew faster than the other two populations, as

seen in Figure 1 (p< 0.0001).We also observed a significant

difference in the rate of cellular proliferation within the

cell lines derived from YRI samples: the second set of 90

YRI cell lines (Phase 3) grow significantly slower than the

first set of 90 YRI lines (Phase 2), with p< 0.0001 (Figure 1).

In contrast, there are no significant growth-rate differences

between the two panels of the CEU cell lines. All popula-

tion-growth comparisons were performed as conservative,

nonparametric t tests.

In addition, we evaluated growth differences between

the cell lines in the Phase 2 ASN populations with an Asian

population released in Phase 3, the Han Chinese from

the Denver metropolitan area panel. The requirement of

having at least three grandparents of Han Chinese ancestry

was the same for both panels. Again, we observe a signifi-

cantly (p ¼ 0.0002) different rate of cellular proliferation

(Figure 1). The significant difference remains even when

comparing only the Chinese from Beijing with the

Chinese from Denver (p < 0.0001, data not shown). These

differences across populations with apparently similar

genetic backgrounds provoked a more detailed investiga-
830 The American Journal of Human Genetics 87, 829–833, Decemb
tion into whether the differences may be attributed to

genetic or environmental causes.

Principal component analysis (PCA) was performed with

the non-linear iterative partial least-squares (NIPALS)20

algorithm in the ade4 library21 of the R package and the

use of ~650,000 common SNPs (minor allele frequency

[MAF] > 0.05) between the two panels; the two popula-

tions did not separate into distinct clusters (Figure 2).

The first two major principal components explain only

1% of the total data variance. This confirmed the expecta-

tion that the two panels of the YRI population are not

genetically different. Because the panels did not separate,

linked SNPs could not have been driving the separation.

However, we repeated the analysis using only unlinked

SNPs, with similar results (Figures S1–S4 available online).

Similarly, we found no difference between the Han

Chinese samples from Beijing in Phase 2 and those from

the Denver metropolitan area in Phase 3 by using principal

components (data not shown).

We calculated Fst values, comparing the YRI Phase 2 and

Phase 3 panels and found no evidence for widespread

allele-frequency differences. The Fst values of the YRI pop-

ulations demonstrated higher values (max 0.336) for males

compared to females than for Phase 2 compared to Phase 3

(max 0.206).

The YRI cell lines were collected from the same collec-

tion site (Ibadan, Nigeria) and are part of the same

HapMap population (Yoruba), the only difference being

what appeared to be a random division into two sets (90

cell lines/set) for the public release. To ensure that our

observations were not due to the fact that the two panels

were ordered, received, and grown at different times within
er 10, 2010



Figure 3. Subsets from Two Yoruba Populations Validate Popu-
lation-Growth Differences
When controlling for all variables, including shipping time, media
and supplements, and personnel, a random subset of cell lines
from the two Yoruba panels showed the same growth difference
that the entire collection had shown (p ¼ 0.0599).
our laboratory, we reevaluated 27 randomly selected, unre-

lated cell lines from the YRI population (14 YRI Phase 2

and 13 YRI Phase 3). In this subset, we used a one-tailed

t test because we had a directional hypothesis. The YRI

Phase 3 cell lines grew slower (p ¼ 0.0599), suggesting

that the difference in growth was not due to differences

in the conditions and timing at which the cell lines were

purchased and maintained (Figure 3).

We investigated whether this difference may be related

to the time required to establish an immortalized cell

line after EBV transformation. We compared the time in

days for the YRI Phase 2 and YRI Phase 3 cell lines to be

frozen down (signifying successful immortalization and

cell growth). Phase 3 cells required significantly more

time compared to Phase 2 cells (p ¼ 0.0002; with a signifi-

cant difference, p ¼ 0.0242, remaining even after removal

of the ten outlier cell lines), as seen in Figure 4.

The original cell lines transformed and then maintained

at Coriell were selected for release with the first panel of
Figure 4. Significant Differences in the Days from Whole-Blood
Culture to Initial Freeze at Coriell for the Two Yoruba Populations
Within the two Yoruba populations, the number of days before
the whole-blood culture was frozen down was significantly
(p ¼ 0.0002) higher for the HapMap 3 panel. When the ten cell
lines that had the highest number of days until freeze, appearing
as outliers on the graph, are removed, the difference remains
significant (p ¼ 0.0242).

The American
HapMap primarily on the basis of how quickly they

reached adequate cell density for harvesting of DNA.

Therefore, cell lines that were growing more slowly were

likely to become part of the second release of cell lines

(Phase 3). Although all cell lines grew adequately to allow

for eventual DNA harvest of comparable quality, trios with

the least number of slow-growing cell lines were more

likely to be included in Phase 2. Therefore, the difference

in the cellular growth rate for the YRI panels is largely

attributed to the selection and division at Coriell.

The division of the population into two panels with

respect to cellular-growth-rate variation has important

ramifications for cellular-phenotype studies, particularly

for studies that are designed to use one population as

discovery and another as replication. Cellular growth

rate has been shown to affect some pharmacological

phenotypes, including drug sensitivity.9,18 Studies using

non-HapMap, patient-derived LCLs have recognized the

importance of looking at the cellular growth rate in phar-

macological studies.22 For example, using the alamarBlue

assay of cell-growth inhibition described previously,9,18

we found that the YRI Phase 2 population was signifi-

cantly more sensitive to three chemotherapeutic agents—

50deoxyfluorouridine (50-DFUR), pemetrexed, and carbo-

platin—compared to the YRI Phase 3 panel, with p %

0.0001 (Figure 5). The slower-growing HapMap Phase 3

cell lines were more resistant to the drugs, consistent

with previous results demonstrating an inverse relation-

ship between slower-growing cells and drug sensitivity.18

To address this problem when performing genotype-

phenotype relationships in this population, the two YRI

panels are best analyzed as a single cohort or, alternatively,

randomly divided into two sets that are not significantly

different in proliferation rate, thus allowing for a discovery

and a replication population.

There are ramifications beyond pharmacology for

genotype-phenotype studies using panels of cell lines

that grow at different rates, including gene expression.

Many different studies of gene expression have utilized

the HapMap cell lines.3–8 Baseline gene expression for

the Phase 2 CEU and YRI cell lines has been generated

with the use of the Affymetrix GeneChip Human Exon

1.0 ST Array.8 Within the CEU population, we found no

gene-expression signatures significantly correlated with

growth rate; in contrast, there were 217 transcript clus-

ters that had a Q value less than 0.10 in the YRI panel

(Table S1). Of those, 135 genes had differential expression

values between the CEU and YRI, with a p value less than

0.05 (Q value less than 0.037).8 The Phase 2 CEU and YRI

panels do not grow at different rates; however, this gene

list could be further evaluated in the Phase 3 YRI panel.

Interpretation of results from gene-expression studies

among populations should consider growth rate, particu-

larly for panels that grow at different rates.

Cellular growth rate was found to be 30% heritable;18

there could be several rare alleles affecting the growth rate

that are not randomly distributed between the two panels.
Journal of Human Genetics 87, 829–833, December 10, 2010 831



Figure 5. Drug Sensitivity Is Significantly Different between
Two Yoruba Populations in a Direction Consistent with the
Growth-Rate Differences
Significant differences in pharmacological sensitivity to three
independent chemotherapeutic agents exist between the two
Yoruba HapMap panels (p % 0.0001 for carboplatin, pemetrexed,
and 50-DFUR).
These nonrandomly distributed alleles could also affect

other phenotypes, not just cellular growth rate. The PCA

merely confirms a similarity in overall genetic makeup but

does not fully address the potential confounding factor

of an artificial selection between the two populations.

Furthermore, although estimates of heritability across large

pedigrees provide a robust measure, it remains that ~70%

of cellular-growth-rate variability has environmental, and

potentially technical causes that are not well understood

or easily identifiable. Regardless of their origins, the impor-

tance of this finding is that these differences can have

important ramifications for phenotypes of interest and

must be considered in experimental design and analysis.

In summary, we found in vitro cellular-growth-rate

differences to be confounding and significant within the

fully released HapMap YRI population and between the

HapMap Han Chinese populations. Overall, we found

important growth-rate differences between many of the

HapMap populations. On the basis of the data reported

here, we believe it is essential to consider growth rate for

any studies that utilize different HapMap populations in

genotype-phenotype studies. In particular, HapMap popu-
832 The American Journal of Human Genetics 87, 829–833, Decemb
lations should be carefully evaluated when incorporated

in genetic studies in which replication and validation

panels are needed, or when comparisons within and

among ethnic groups will be made.
Supplemental Data

Supplemental Data include four figures and one table and can be

found with this article online at http://www.cell.com/AJHG/.
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Web Resources

The URLs for data presented herein are as follows:

1000 Genomes Project, http://www.1000genomes.org/

Coriell Cell Repositories, http://ccr.coriell.org/

HapMap Project, http://www.HapMap.org/

The R Project for Statistical Computing, http://www.r-project.org/
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